Virtual Histology of Cortical Thickness and Shared Neurobiology in 6 Psychiatric Disorders

Writing Committee for the Attention-Deficit/Hyperactivity Disorder; Autism Spectrum Disorder; Bipolar Disorder; Major Depressive Disorder; Obsessive-Compulsive Disorder; and Schizophrenia ENIGMA Working Groups

IMPORTANCE Large-scale neuroimaging studies have revealed group differences in cortical thickness across many psychiatric disorders. The underlying neurobiology behind these differences is not well understood.

OBJECTIVE To determine neurobiologic correlates of group differences in cortical thickness between cases and controls in 6 disorders: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and schizophrenia.

DESIGN, SETTING, AND PARTICIPANTS Profiles of group differences in cortical thickness between cases and controls were generated using T1-weighted magnetic resonance images. Similarity between interregional profiles of cell-specific gene expression and those in the group differences in cortical thickness were investigated in each disorder. Next, principal component analysis was used to reveal a shared profile of group difference in thickness across the disorders. Analysis for gene coexpression, clustering, and enrichment for genes associated with these disorders were conducted. Data analysis was conducted between June and December 2019. The analysis included 145 cohorts across 6 psychiatric disorders drawn from the ENIGMA consortium. The numbers of cases and controls in each of the 6 disorders were as follows: ADHD: 1814 and 1602; ASD: 1748 and 1770; BD: 1547 and 3405; MDD: 2658 and 3572; OCD: 2266 and 2007; and schizophrenia: 2688 and 3244.

MAIN OUTCOMES AND MEASURES Interregional profiles of group difference in cortical thickness between cases and controls.

RESULTS A total of 12,721 cases and 15,600 controls, ranging from ages 2 to 89 years, were included in this study. Interregional profiles of group differences in cortical thickness for each of the 6 psychiatric disorders were associated with profiles of gene expression specific to pyramidal (CA1) cells, astrocytes (except for BD), and microglia (except for OCD); collectively, gene-expression profiles of the 3 cell types explain between 25% and 54% of variance in interregional profiles of group differences in cortical thickness. Principal component analysis revealed a shared profile of difference in cortical thickness across the 6 disorders (48% variance explained); interregional profile of this principal component 1 was associated with that of the pyramidal-cell gene expression (explaining 56% of interregional variation). Coexpression analyses of these genes revealed 2 clusters: (1) a prenatal cluster enriched with genes involved in neurodevelopmental (axon guidance) processes and (2) a postnatal cluster enriched with genes involved in synaptic activity and plasticity-related processes. These clusters were enriched with genes associated with all 6 psychiatric disorders.

CONCLUSIONS AND RELEVANCE In this study, shared neurobiologic processes were associated with differences in cortical thickness across multiple psychiatric disorders. These processes implicate a common role of prenatal development and postnatal functioning of the cerebral cortex in these disorders.
The advancement of large-scale magnetic resonance imaging (MRI) studies has enabled systematic investigations of cortical morphology, such as cortical thickness and surface area, across a variety of psychiatric disorders. In particular, the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium has conducted some of the largest MRI studies characterizing group differences between patients (cases) and control individuals in the cerebral cortex for a number of disorders, including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and schizophrenia. Nonetheless, the neurobiology underlying these MRI-derived macroscopic features is not well understood.

As identified in postmortem studies, there are subtle differences in the cellular composition of the cerebral cortex of patients diagnosed as having various psychiatric disorders (vs controls) such as the density of neurons and/or glial cells and the extent of dendritic arborization. Mostly lower neuronal density and/or neuronal size have been documented in ASD, BD, MDD, OBDD, and schizophrenia. Similar alterations in the density of glial cells (astrocytes, microglia, or oligodendrocytes) have been observed in ASD, BD, MDD, OBDD, and schizophrenia.

Several MRI studies have demonstrated distinct interregional profiles of group differences in cortical thickness across the 34 regions of the Desikan-Killiany atlas. We use the word profile to refer to interregional (spatial) variations in a measure, such as cortical thickness, across the cerebral cortex. Lower cortical thickness in temporal regions in cases (vs controls) is a common feature across ADHD, ASD, BD, MDD, OCD, and schizophrenia. A 2019 report of the ENIGMA cohorts showed cross-disorder correlations among disorders. Likewise, large-scale genome-wide association studies (GWAS) identify shared genetic architecture among these psychiatric disorders.

To our knowledge, no studies have investigated systematically the association between microscopic ex vivo histology and macroscopic in vivo differences in cortical thickness across psychiatric disorders. This is required to facilitate our understanding of MRI-derived measures in a neurobiologic context as well as the usefulness of MRI for tracking of clinical progression of disorders and their treatment.

Here, we generate profiles of group differences in cortical thickness between cases and controls for ADHD, ASD, BD, MDD, OCD, and schizophrenia using an identical linear-modeling approach executed in each participating cohort. Next, we use a virtual histology approach whereby interregional profiles of cell-specific gene expression are correlated across the 34 cortical regions, with interregional profiles of group differences in cortical thickness. Through a series of bioinformatic approaches, we then identify shared cellular correlates across the 6 psychiatric disorders.

Methods

Group Differences in Cortical Thickness

T1-weighted MRI scans were acquired in 145 cohorts participating in the ENIGMA Consortium with varying MRI field strength and vendors. Details regarding MRI acquisition and sample demographics are found in eTable 1 and eTable 2 in the Supplement. FreeSurfer cortical reconstruction (several versions) was used to derive measures of cortical thickness in 34 regions (per hemisphere), as segmented using the Desikan-Killiany atlas. Quality control was conducted by contributing cohorts, following standardized ENIGMA protocols (http://enigma.ini.usc.edu/protocols/imaging-protocols/). Individual ENIGMA groups performed multiple linear regression analyses in their respective cohorts, which modeled cortical thickness of each region, separately, as a function of diagnosis (eg, ADHD), age, age squared, sex, and site-specific covariates (eg, MR scanner). Individual cohorts obtained approval from local institutional ethics boards, and informed consent was obtained from study participants or their guardians. An inverse variance-weighted random-effects model from the “metafor” R package (The R Foundation) was used to generate meta-analytic profiles of group differences across the 34 regions for each disorder. This report is an analysis of shared data in the ENIGMA consortium rather than existing literature.

Magnetic Resonance Imaging-Derived Similarity and Genetic Similarity

This analysis was carried out to evaluate similarity in pairwise correlations in interregional profiles of group differences in cortical thickness and corresponding pairwise correlations in genome-wide genetic architecture, described in the eMethods in the Supplement. Group differences in cortical thickness were first correlated across psychiatric disorders with a biweight midcorrelation using R package WGCNA (rational in the eMethods in the Supplement). Genetic correlations between psychiatric disorders were obtained from the Brainstorm consortium. The similarity of the group differences in cortical thickness and genetic cross-disorder correlation matrices was tested for significance using Mantel test from the “vegan” R package.
Virtual Histology
Virtual histology is an approach that correlates, across space, an MRI-derived profile, such as an interregional profile of group differences in cortical thickness, with interregional profiles of cell-specific gene expression.26,27 As described previously, gene-expression data from the Allen Human Brain Atlas (AHBA; 6 donors, aged 24-57 years) were first mapped to the 34 regions of the Desikan-Killiany atlas.28,29 To ensure similarity of interregional profiles in gene expression across donors, and across the life span, we applied a conservative 2-stage filtering process. First, a donor-to-median correlation in the AHBA was used to retain only genes whose profiles were consistent among the 6 donors (retaining 8216 of 20 737 genes present in AHBA). Second, the genes passing stage 1 were filtered based on interregional profile similarity with an independent atlas of gene expression, namely BrainSpan (retaining 2511 of 8216 genes; see eMethods in the Supplement for additional details). The final set of 2511 genes was used for analyses conducted in this report. Next, single-cell RNA sequencing data from the mouse hippocampus and S1 area of cerebral cortex were used to categorize the 2511 genes as specific to 9 cell types identified (CA1 pyramidal, S1 pyramidal, interneuron, astrocyte, microglia, oligodendrocyte, mural, endothelial, and ependymal cells).30 Pyramidal cell types (CA1 and S1) were labeled based on their anatomic origin, but the molecular characteristics of these pyramidal cells, as indexed by gene expression, were not restricted to the brain regions in which these 2 types of pyramidal cells were found. The use of these panels is analogous to a data reduction technique driven by neurobiologically relevant clustering (see the eMethods in the Supplement for additional details). Interregional profiles of cell-specific gene expression were then correlated across the 34 regions with MRI-derived profiles to generate a distribution of correlation coefficients for each of the cell types. This distribution was then tested for significance using a resampling approach from 100 000 random samples. This analysis was restricted to MRI profiles from the left hemisphere only (owing to data availability in AHBA). In addition, we have estimated the collective variance explained by cell types identified from virtual histology in interregional profiles of group differences (see the eMethods in the Supplement).

Coexpression Analyses
Seed genes were defined by biweight midcorrelation between principal component 1 (PC1) profile (shared variance in group differences in cortical thickness across the 6 disorders) and cell-specific genes passing false discovery rate (FDR)-corrected threshold; 2-sided P less than .05.31 For these analyses, we harmonized gene-expression data from human cerebral cortex across 5 data sets (AHBA,30 BrainCloud,32 Brain eQTL Almanac [Brainiac],33 Genotype Tissue Expression [GTEx],34 and BrainSpan).35 The curation of these 5 gene-expression databases has been described previously and is presented in the eMethods in the Supplement.36,37 In total there were 534 donors (aged 0-102 years) with gene-expression data for 16 245 genes across all data sets. Coexpression analyses were generated using linear mixed-effects models where gene expression of each seed was modeled against other genes’ expression, with age and sex as fixed effects and donor identifier as a random effect. The top 0.1% of positively coexpressed genes for each of the seed genes were used to construct our coexpressed network panels.

Gene Trajectory Clustering
Coexpressed genes were clustered based on their temporal pattern of gene expression using data from the BrainSpan atlas (http://www.brainspan.org). This data set was chosen for the gene trajectory clustering because it is the only one that includes gene expression across prenatal and postnatal developmental periods (42 donors, age range from 8 postconception weeks to age 40 years; 11 cortical regions). Genes were clustered using mixed-effects models with nonparametric smoothing spline fitting available in the “TMixClust” R package (the eMethods and eTables 12-17 in the Supplement for additional details).38

Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Psychiatric Disorder Enrichment Analysis
Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were conducted using the R package “clusterProfiler.”39 Gene ontology (biological process ontology only) and Kyoto Encyclopedia of Genes and Genomes terms with a minimum of 10 and a maximum of 500 genes were included in the analysis. Redundancy of GO terms was removed based on similarity cutoff of 0.90. Enrichment between coexpressed genes and genes associated with psychiatric disorder were conducted using a hypergeometric test. Genetic variants associated with psychiatric disorder were derived from the DisGeNet database (http://www.disgenet.org).40 The background gene set for all of the aforementioned enrichment test included 16 245 genes that were present in our harmonized data set of gene expression for coexpression analyses. P values were corrected using the FDR procedure.41

Results
Meta-analysis
We characterized meta-analytic profiles of group differences in cortical thickness for each of the 6 disorders across the 34 regions of the cerebral cortex (Figure 1; eTables 3-8, eFigure 1 in the Supplement, left hemisphere only). In total, there were 12 721 cases and 15 600 controls contributing to these profiles (eTable 2 in the Supplement). Across the disorders, interregional variation in group differences of cortical thickness were positively correlated between schizophrenia and ADHD, ASD, BD, MDD, and OCD (Figure 2A). Overall, there was a general trend of positive correlations (biweight midcorrelation, r > 0) of group differences across all 6 psychiatric disorders (Figure 2A). Genetic correlations, as quantified by linkage disequilibrium score regression, also showed a number of pairwise positive correlations among these psychiatric disorders, in particular for schizophrenia (Figure 2B; reproduced using data from the Brainstorm consortium).30 Cross-disorder similarity of differences in cortical thickness (derived from MRI; Figure 2A) was positively associated with cross-disorder
genetic similarity (derived from GWAS; Figure 2B), explaining 27% of variance ($r = 0.52$; Mantel $P = .034$, Pearson $P = .045$).

Virtual Histology of Group Difference in Cortical Thickness

Interregional variation in the expression of genes specific to pyramidal (CA1) cells was negatively associated with the interregional profile of group differences in cortical thickness in each of the 6 psychiatric disorders ($-0.08 > r > -0.23$; FDR P value <.05, Figure 3; eTable 9, eFigure 2 in the Supplement). Thus, regions with greater expression of pyramidal (CA1)–specific genes showed greater differences in cortical thickness between cases and controls. We also observed this negative association with interregional profiles of expression of genes specific to astrocytes and microglia in all 6 disorders except BD (no correlation with astrocytes) and OCD (no cor-
relation with microglia). Lastly, we observed a negative association between pyramidal (S1) specific expression and group differences in thickness in BD only. The amount of interregional variation in the group differences in cortical thickness explained collectively by the gene-expression profile is presented in Table 18 in the Supplement.

Principal Component Analysis

Given the similarity of findings across the 6 disorders vis à vis virtual histology, we used principal component analysis to reduce the dimensions of the data (Figure 4A). The first principal component (PCI) explained 48% of variation in group differences of thickness profiles across the 6 disorders (eFigure 3 in the Supplement). Principal component 1 was positively correlated with each of disorder's profiles (eFigure 3C in the Supplement), and its interregional profile was negatively associated with the interregional profiles of pyramidal (CA1), astrocyte, and microglia-specific gene expression (Figure 4B); regions with greater expression of cell-specific genes showed greater differences in cortical thickness between cases and controls. The amount of interregional variation in the shared group difference in cortical thickness explained by the gene-expression profiles is presented in eTable 18 in the Supplement.
Shared Neurobiology Across Disorders

To investigate the association between PC1 and CA1 pyramidal specific genes, we used all CA1 genes associated significantly (FDR significance threshold $P < .05$) with PC1 as seed genes for coexpression analyses. Data from the AHBA, BrainEAC, BrainSpan, BrainCloud, and GTEx were harmonized to identify robust coexpression associations across the genome (eFigures 4 and 5 in the Supplement). These PC1-CA1 coexpressed genes (412 genes) were clustered based on their temporal pattern of expression using unsupervised nonparametric mixed modeling. This analysis yielded 2 clusters: cluster 1, which was upregulated during prenatal periods and downregulated in postnatal life, and cluster 2, which showed the opposite developmental trajectory (Figure 5A). Gene ontology enrichment analysis revealed involvement of neurodevelopmental processes (axon development; fold enrichment $= 3.99$; FDR $P = 5.15 \times 10^{-05}$) in the prenatal cluster (Figure 5B; eFigure 6 in the Supplement) and involvement of synaptic signaling/neurotransmission- and synaptic plasticity-related terms (Fold enrichment, 4.70 and 4.56, respectively; FDR P value $= 5.11 \times 10^{-09}$ and 2.31×10^{-03}, respectively) in the postnatal cluster (Figure 5C; eFigure 6 in the Supplement). Gene enrichment analysis showed that the prenatal cluster is enriched in genes associated with ASD, BD, MDD, and schizophrenia, while the postnatal cluster is enriched only in genes associated with ADHD and schizophrenia (FDR P value $< .05$; eFigure 7 in the Supplement). The entire coexpressed network (i.e., genes from both clusters) is enriched for all 6 disorders, at varying levels of enrichment (eFigure 7 in the Supplement). Finally, with the aid of laminar gene-expression data from the developing human neocortex, we show that the prenatal cluster was upregulated in the cortical subplate zone and cortical plate (area under the receiver operating curve, 0.68; FDR P value $= 2.35 \times 10^{-15}$), while downregulated in the ventricular zone (area under the receiver operating curve, 0.30; FDR P value $= 1.30 \times 10^{-17}$; eFigure 8 and eTable 10 in the Supplement). This held true for the postnatal cluster as well (eFigure 8 and eTable 11 in the Supplement).
The analysis described previously was repeated for the astrocyte-specific and microglial-specific genes. Principal component 1–astrocyte coexpressed genes (168 genes) were enriched in metabolic processes, such as amino acid transport (Fold enrichment = 19.56; FDR P value = 2.09 × 10⁻³), as well as enrichment in genetic variants associated with BD and schizophrenia (Fold enrichment = 2.50 and 1.82; FDR P value = .01 and .01, respectively; eFigure 9 in the Supplement). Principal component 1–microglia coexpressed genes (118 genes) were enriched in immune-related processes (Fold enrichment = 11.93; FDR P value = 1.7 × 10⁻⁸) and showed no enrichment with genetic variants associated with any of the 6 psychiatric disorders (eFigure 10 in the Supplement).

Discussion

We characterized robust interregional differences in cortical thickness between cases and controls across the cerebral cortex in 6 common psychiatric disorders, as done previously by the individual working groups of the ENIGMA consortium.¹⁻⁶,¹⁸ The interregional profiles presented in this report were generated using the same linear model (with the same covariates) in each of the 145 participating cohorts and, as such, allow for direct comparisons of these profiles across the 6 disorders. This also facilitated our observation of the similarity between shared differences in MRI-derived thickness and genetic architecture across these 6 disorders, an observation suggesting the presence of genetic variants that may be associated with vulnerable brain phenotypes in common for the 6 disorders investigated here (Figure 2).

Virtual histology identified common cell-specific associations between ex vivo gene expression and in vivo MRI-derived group differences in cortical thickness across the 34 cortical regions. In this analysis, all 6 disorders showed a negative association with expression profiles specific to CA1 pyramidal cells. Regions with greater group differences in cortical thickness are the regions with greater expression of pyramidal (CA1-like) specific genes within the normative human brain, potentially indicating vulnerability of these regions. Although the CA1 pyramidal-cell panel is labeled based on the source of these cells (CA1 region of the hippocampus), this does not mean that biologic processes implicated in CA1 genes are restricted to this region; in fact, similar molecular processes are present throughout the human cerebral cortex (see the eDiscussion in the Supplement for additional details). As such, we interpret the functional relevance of these genes being associated with differences in cortical thickness. It is important to state that the gene expression used throughout this report comes from individuals without any diagnoses of neurologic or psychiatric disorders. Studies linking cell-specific genes with psychiatric GWAS-associated genes...
Figure 5. Trajectories of Expression for Genes Associated With the Shared Profile of Group Differences in Cortical Thickness

A PC1–CA1 coexpressed genes (n = 412 genes)

Cluster assignment
- Prenatal
- Postnatal

Scaled expression

-5.0 -2.5 0.0 2.5 5.0

Postconception time, d (log2)

56 256 2048 16 384

Modulation of chemical synaptic transmission
- Regulation of trans synaptic signaling
- Neurotransmitter transport
- Signal release
- Regulation of neurotransmitter levels
- Neurotransmitter secretion
- Signal release from synapse
- Synaptic vesicle cycle
- Calcium ion regulated exocytosis
- Regulation of synaptic plasticity
- Regulation of calcium ion-dependent exocytosis
- Synaptic vesicle exocytosis
- Membrane depolarization during action potential
- Behavioral fear response
- Behavioral defense response

B Prenatal genes (red) GO enrichment

Axon development
- Axonogenesis
- Regulation of neuron projection development
- Modulation of chemical synaptic transmission
- Regulation of trans synaptic signaling
- Regulation of GTPase activity
- Axon guidance
- Neuron projection guidance
- Synapse organization
- Cognition
- Dendrite development
- Receptor clustering
- Brain morphogenesis
- Postsynaptic density organization
- Postsynaptic specialization organization

C Postnatal genes (cyan) GO enrichment

GeneRatio

0.004 0.008 0.01 0.02

Adjusted P

Count

0.025 0.050 0.075 0.100 0.125 0.25

GeneRatio

0.001 0.001 0.002 0.002

Adjusted P

Count

0.02 0.04 0.06 0.08 0.10 0.12 0.14

Lifespan trajectory in gene expression of first principal component (PC1)–CA1 coexpressed genes. Each line represents a fitted LOESS model for the expression of a given gene. Genes and their fitted models are colored based on clustering based on temporal trajectories. First principal component–CA1 coexpressed genes were generated using coexpression of seed genes, namely genes that associate with PC1 profile and the 103 CA1 pyramidal specific genes passing false discovery rate \(P < .05 \). Gene ontology (GO) enrichment analysis of the prenatal cluster (B) and postnatal cluster (C). Dot size (count) for enrichment analysis (B,C) represents the number of genes that are within the co-expression gene panels as well as a particular GO group (y-axis).
show similar enrichment of CA1 pyramidal cells in ASD, BD, and schizophrenia.42 This is another line of evidence linking genetically identified enrichment of CA1 pyramidal cells (previous study43) with MRI-identified enrichment of CA1 pyramidal cells within psychiatric disorders as seen in this study.

Principal component analysis identified a common component of these cortical differences, indicating a shared inter-regional profile of case-control differences in cortical thickness among all 6 disorders. Although not the primary focus of this report, we also report other PCs (explaining less variance); these appear to capture mostly disease-specific variations in group differences in cortical thickness (eFigure 3 in the Supplement). As expected from the disease-specific analyses, this PCI profile was associated with the same 3 cell types, namely CA1 pyramidal, astrocyte, and microglia. The CA1 pyramidal gene set is enriched with biologic processes related to dendritic arborization,27 and extensive dendritic branching is a key morphologic phenotype of pyramidal neurons.43 Similarly, our phenotype is derived from cortical thickness, a measure that is directly associated with ex vivo dendrite length across individuals (R^2 = 0.25).44 Dendrites control the flow and integration of information within neurons and are a medium of structural plasticity within the cerebral cortex. Remodeling of dendritic trees and dendritic spines have been observed as a result of environmental (stress and sensory enrichment/deprivation) and genetic influences acting on neuronal pathways and cortical circuits. The strongest evidence in implicating axon-guidance proteins in psychiatric disorders is found in ASD whereby expression and GWAS studies converge on canonical axon-guidance proteins, such as slits, robos, and semaphorins, all of which are present in the PCI-CA1 coexpressed genes in our study (eFigure II in the Supplement).55 See the eDiscussion in the Supplement regarding subplate enrichment. We speculate that early changes in neurodevelopmental processes may render certain regions and cell types (pyramidal cells and their dendrites) more vulnerable and, as such, more likely to be involved in the etiology of all psychiatric disorders. This may explain the shared profile of difference we observe.

Postnatal/Functional Features of Psychiatric Disorders
There is strong genetic, molecular, and histological evidence demonstrating synaptic dysfunction and pathological changes in spine density and morphology in psychiatric disorders (particularly ASD, schizophrenia, MDD, and BD).56-59 Alterations in these processes are likely to influence structural plasticity and subsequent formation of complex and adaptable circuits. Both genetic and experience-dependent factors play a role in structural plasticity across life, and a summation of these factors may increase or decrease the risk of developing a psychiatric disorder. These structural (dendritic spine) changes are prominent during periods of maturation (childhood and youth), coinciding with the peak age in incidence of psychiatric disorders.56,60 The postnatal cluster of coexpressed genes was enriched in synaptic transmission and regulation of synaptic plasticity. We hypothesize that this cluster of genes is indicative of plasticity-related morphological changes in the cerebral cortex that may in part reflect adverse experiences common across all psychiatric disorders. This interpretation is consistent with the fact that there are fewer disorder-associated gene variants enriched in the postnatal cluster as compared with the prenatal cluster, potentially indicating that the postnatal processes are associated with environmental rather than genetic components of risk for psychiatric disorders.

Limitations
There are several limitations to the approach used in this report. First, only 2511 genes determined as having representative interregional profiles of their expression are used for virtual histology. We chose this conservative approach given that interregional profiles in case-control differences and those in gene expression come from 2 different sets of brains (see the eDiscussion in the Supplement for additional details). This limitation may lower our ability to capture other relevant neurobiologic signals. In an attempt to mitigate this limitation, downstream analyses use coexpression to broaden the scope of the genes investigated, albeit indi-
Conclusions

In summary, we characterized shared neurobiography across 6 psychiatric disorders that implicates pyramidal cells (and dendrites) in representing a possible target of perturbations that may increase a general vulnerability to mental illness. Our bioinformatics-based analyses point toward involvement of neurodevelopmental (prenatal) and plasticity-related (postnatal) aspects underlying pathophysiology of psychiatric disorders and their brain correlates. These shared aspects of psychiatric disorders highlight the importance of transdiagnostic approaches in psychiatry.
Conflict of Interest Disclosures: Dr Anticevic reported personal grants, and fees outside from Blackthorn Therapeutics during the submitted work. Dr McIntosh reported grants from Wellcome Trust during the conduct of the study; grants from The Sackler Trust outside the submitted work. Dr Arango reported personal fees from Acorda, Angi, Gedeon Richter, Janssen-Cilag, Lundbeck, Minerva, Otsuka, Roche, Servier, Shire, Schering-Plough, Sumitomo Dainippon Pharma, Sunovion, and UCB and grants and personal fees from Janssen and Flynn Pharma outside the submitted work. Dr Arnold reported grants from Alberta Innovates Translational Health Chair in Child and Youth Mental Health and Ontario Brain Institute during the conduct of the study. Dr Asherson reported personal fees from Taedele, Medice, Novartis, and UKAAN and grants and personal fees from Janssen and Flynn Pharma outside the submitted work. Dr Assogna reported grants from Ministry of Health outside the submitted work. Dr Banaschewski reported personal fees from Lundbeck, Medice, Neurim Pharmaceuticals, Obergberg GmbH, Shire, and Lilly outside the submitted work and royalties from Hogrefe, Kohlhammer, CIP Medien, and Oxford University Press. Dr Baumeister reported grants from Deutsche Forschungsgemeinschaft during the conduct of the study. Dr Brennan reported grants from Eli Lilly; other support from Transcet Pharmaceuticals and Biohaven Pharmaceuticals; and personal fees from Rugen Therapeutics and Nobilis Therapeutics outside the submitted work. Dr Calvo reported grants from Monash University during the conduct of the study. Dr Breneman reported grants from Eli Lilly; other support from Transcet Pharmaceuticals and Biohaven Pharmaceuticals; and personal fees from Rugen Therapeutics and Nobilis Therapeutics outside the submitted work. Dr Chee reported personal grants from Neuroscience and Development and Japan Society for the Promotion of Science during the conduct of the study and grants from Otsuka and Stanley Medical Research Institute 18T-004 outside the submitted work. Dr Hahverdian reported grants from National Institute of Mental Health outside the submitted work. Dr Harrison reported grants from National Institute of Mental Health, and grants from Stanley Medical Research Institute during the conduct of the study. Dr Hargreaves reported grants and personal fees from Shire/Takeda, Medice, and Biocodex outside the submitted work. Dr Hirsch reported grants from Canadian Institutes of Health Research during the conduct of the study. Dr Attila reported personal fees from Takeda outside the submitted work. Dr Hloba reported personal fees from Shire, Medice, and Biocodex outside the submitted work. Dr Hlova reported grants from Canadian Institutes of Health Research during the conduct of the study. Dr Hohmann reported grants and personal fees from Shire/Takeda, Medice, and Biocodex outside the submitted work. Dr Hohmann reported grants from Canadian Institutes of Health Research during the conduct of the study. Dr Hohmann reported grants and personal fees from Shire/Takeda, Medice, and Biocodex outside the submitted work. Dr Hohmann reported grants from Canadian Institutes of Health Research during the conduct of the study. Dr Hohmann reported grants and personal fees from Shire/Takeda, Medice, and Biocodex outside the submitted work.
reported personal fees from Sanofi outside the submitted work. Dr. Kircher reported grants from DFG during the conduct of the study. Dr. Kazak reported grants from UK Medical Research Council during the conduct of the study and other support from Medice outside the submitted work. Dr. Landén reports grants from Broad Institute, The Swedish Foundation for Strategic Research, and The Swedish Medical Research Council during the conduct of the study and personal fees from Lundbeck pharmaceuticals outside the submitted work. Dr. Lazar reported grants from Marató TV3 Foundation during the conduct of the study. Dr. Lebedeva reported grants from Russian Foundation for basic research (RFBR), and grants from BFFP, personal fees from CoBrain project, and nonfinancial support from INPT Peptogen, AG outside the submitted work. Dr. Lera-Miguel reported grants from Fundación Marató TV 3-2009 during the conduct of the study. Dr. Louza reported personal fees from Janssen, Lundbeck, Takeda, Haysen, Cilag, Springer Healthcare, and grants from Sanoﬁ. Dr. Portella reported grants from ICSS, Spanish Government, personal fees from ICSS, and other support from CIBERSAM during the conduct of the study. Dr. Martyn reported grants from Health Research Board, Ireland, during the conduct of the study. Dr. Menchón reported personal fees from UpToDate, Wolters Kluwer Health, and Elsevier outside the submitted work. Dr. Mathalon reported personal fees from Aptinex, Greenwich Biosciences, Cadent Therapeutics, and Boehringer-Ingelheim outside the submitted work. Dr. McPhilemy reported grants from Health Research Board during the conduct of the study. Dr. Minuzzi reported grants from Instituto de Salud Carlos III during the conduct of the study. Dr. Moreno reported personal fees from Janssen, Angelini, Servier, Nuvelution, Otsuka, and Lundbeck outside the submitted work. Dr. Morgado reported personal fees from the European Regional Development Fund (FEDER) funds through the Competitiveness Factors Operational Programme and by national funds, through the Foundation for Science and Technology, under the scope of the project POCTI-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the FEDER during the conduct of the study; personal fees from Angelniki, AstraZeneca, Biel, Biogen, Janssen, and grants from DGI-Portugal, Bial Foundation, 2CA-Braga outside the submitted work. Dr. Murphy reported personal fees from EU Innovative Medicines Initiative (EU-IMI) and EU Innovative Medicines Initiative. EU AIMs-2-TRIALS and other support from NHR Maudsley Biomedical Research Centre during the conduct of the study and personal fees from Roche outside the submitted work. Dr. Nakame reported grants from JSPS KAKENHI during the conduct of the study. Dr. Jahan-shad reported grants from the National Institutes of Health during the conduct of the study and Biogen Inc outside the submitted work. Ms. Owens reported grants from Australian NHMRC during the conduct of the study. Dr. Paloyelis reported grants from UK Medical Research Council G03010896 during the conduct of the study. Dr. Parcell reported grants from NHMRC and grants from Pratt Foundation during the conduct of the study; personal fees from Lundbeck, Australia Pty Ltd, grants from Lundbeck Foundation, and grants from NHMRC outside the submitted work. Dr. Parelleda reported other support from CIBERSAM during the conduct of the study; grants from the Ministry of Health, Horizon2020, and the Alicia Koplowitz Foundation; and personal fees from Exelis and Servier outside the submitted work. Dr. Pauli reported grants from German Research Foundation during the conduct of the study. Dr. Prada reported grants from University of California Irvine during the conduct of the study. Dr. Puig reported grants from ISCIII, FEDER, and Fundación La Marató-TV3 during the conduct of the study. Dr. Ramos-Quiroga reported grants and personal fees from Takeda, Janssen, Roche, Lilly, Novartis, Bial, Shinonogi, Lundbeck, Almirall, Braingaze, Servier, and personal fees from Pusio outside the submitted work. Dr. Rauer reported personal fees from Federal Ministry of Education and Research (BMBF) Germany and the European Commission during the conduct of the study. Dr. Reddy reported grants from Department of Science and Technology Government of India and grants from Department of Biotechnology Government of India during the conduct of the study. Dr. Rubia reported grants from Takeda Pharmaceuticals outside the submitted work. Dr. Schofield reported grants from NHMRC during the conduct of the study. Dr. Serpa reported other support from Centre de Aperfeicoamento de Pessoal de Nível Superior (CAPES, Brazil) during the conduct of the study and Lundbeck Brazil outside the submitted work. Dr. Shaw reported grants from Intramural Program of the National Institutes of Health during the conduct of the study. Dr. Sill reported grants from National Health and Medical Research Council of Australia during the conduct of the study. Dr. Simpson reported grants from National Institute of Mental Health and Biohaven Pharmaceuticals during the conduct of the study; other support from JAMA Psychiatry, UpToDate Inc, and Cambria outside the submitted work. Dr. Soares reported grants from National Institutes of Health during the conduct of the study; personal fees from J&J, Allergan, Sanofi, Sunovion, Pfizer, Sage, and Astellas; and grants from Compass Pathways, Merck, and Allergan outside the submitted work. Dr. Spalletta reported grants from Italian Ministry of Health during the conduct of the study. Dr. Lawrie reported grants and personal fees from Janssen and personal fees from Sunovion outside the submitted work. Dr. Tolin reported personal fees from Mindyra LLC outside the submitted work. Dr. van der Wee reported grants from Geestkracht program of the Netherlands Organization for Health Research and Development (ZonMw) during the conduct of the study. Dr. Vieta reported grants and personal fees from Abbott, Janssen, Lundbeck, Sage, Sanofi-Aventis and personal fees from Allergan, Angelini, Sumitomo Pharma, Novartis, Otsuka, Richter, and Takeda outside the submitted work. Dr. Voeinos reported grants from National Institute of Mental Health, Canadian Institutes of Health Research, Canada Foundation for Innovation, CAMH Foundation, and University of Toronto outside the submitted work. Dr. von Polier reported grants from Interdisciplinary Centre for Clinical Research (IZKF), Medical Faculty, RWTH Aachen University, during the conduct of the study. Dr. T. Yang reported grants from the National Institute of Mental Health during the conduct of the study and from the National Institutes of Health outside the submitted work. Dr. K. Yang reported grants from the National Institutes of Health during the conduct of the study. Dr. Frank reported grants from NWO and European Commission H2020 during the conduct of the study and personal fees from Medice outside the submitted work. Dr. Hoogman reported grants from Netherlands Scientific Organisation, Netherlands Scientific Organisation, the National Institutes of Health, and College of Neuropsychopharmacology during the conduct of the study. Dr. Buitelaar reported personal fees from Janssen, Servier, Roche, Takeda/Shire, Medice, and Angelini outside the submitted work. Dr. Andreason reported personal fees from Sunovion outside the submitted work. Dr. Ching reported grants from Biogen Inc outside the submitted work. Dr. Stein reported personal fees from Mindyra LLC outside the submitted work. Dr. van den Heuvel reported other support from Benecke outside the submitted work. Dr. van Erp reported grants from the National Institutes of Health/National Institute of Mental Health during the conduct of the study. Dr. Thompson reported grants from Biogen Inc outside the submitted work. Dr. French owns shares in Cortezyme Inc unrelated to the topic of this manuscript. Dr. Anagnostou has received consultation fees from Roche and Quadrant; research funding from Roche. in-kind supports from AMO Pharma; royalties from APPI and Springer; and editorial honorarium from Wiley. Dr. Brandeis serves as an unpaid scientific consultant for an EU-funded neurofeedback trial. The present work is unrelated to the above grants and relationships. Dr. Richarte was on the speakers’ bureau and/or acted as consultant for Takeda, Eli Lilly in the last 5 years. She also received travel awards (air tickets and hotel) for taking part in psychiatric meetings from Janssen-Cilag, Rubió, Takeda, and Eli Lilly. Dr. Preda reported grants and personal fees from NIH, NARSAD, Boehringer-Ingelheim, BMJ, EBSCO, Medscape, GLG, and Goodpoint. No other disclosures were reported. Funding/Support: The funding sources of this study can be found in the Acknowledgments of the Supplement. Role of the Funder/Sponsor: The funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. REFERENCES 1. Hoogman M, Muelter R, Guineraes JP, et al. Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples. Am J Psychiatry. Published online 2019 2. van Rooij D, Anagnostou E, Arango C, et al. Cortical and subcortical brain morphometry differences between patients with autism spectrum

