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ABSTRACT

BACKGROUND: Morphology of the human cerebral cortex differs across psychiatric disorders, with neurobiology
and developmental origins mostly undetermined. Deviations in the tangential growth of the cerebral cortex during pre/

perinatal periods may be reflected in individual variations in cortical surface area later in life.
METHODS: Interregional profiles of group differences in surface area between cases and controls were generated
using T1-weighted magnetic resonance imaging from 27,359 individuals including those with attention-deficit/
hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, schizophrenia, and
high general psychopathology (through the Child Behavior Checklist). Similarity of interregional profiles of group
differences in surface area and prenatal cell-specific gene expression was assessed.
RESULTS: Across the 11 cortical regions, group differences in cortical area for attention-deficit/hyperactivity
disorder, schizophrenia, and Child Behavior Checklist were dominant in multimodal association cortices. The same
interregional profiles were also associated with interregional profiles of (prenatal) gene expression specific to
proliferative cells, namely radial glia and intermediate progenitor cells (greater expression, larger difference), as
well as differentiated cells, namely excitatory neurons and endothelial and mural cells (greater expression, smaller
difference). Finally, these cell types were implicated in known pre/perinatal risk factors for psychosis. Genes
coexpressed with radial glia were enriched with genes implicated in congenital abnormalities, birth weight,
hypoxia, and starvation. Genes coexpressed with endothelial and mural genes were enriched with genes
associated with maternal hypertension and preterm birth.
CONCLUSIONS: Our findings support a neurodevelopmental model of vulnerability to mental illness whereby prenatal
risk factors acting through cell-specific processes lead to deviations from typical brain development during
pregnancy.

https://doi.org/10.1016/j.biopsych.2022.02.959
1Cases are defined as individuals with a diagnosis of the following
conditions: schizophrenia, autism spectrum disorder, attention-
deficit/hyperactivity disorder, bipolar disorder, and major
depressive disorder, or by the presence of symptoms of
psychopathology as assessed with the Child Behavior
Checklist in a large community-based sample of children (the
ABCD Study).
The majority of symptoms of mental illness, from hallucinations
and delusions in psychosis to the impaired attention and
cognitive control in attention-deficit/hyperactivity disorder
(ADHD), are rooted in disturbances of perceptual, cognitive,
and affective processes subserved by the cerebral cortex. The
human cerebral cortex is a highly folded sheath of tissue
(w1800 cm2 of surface area) containing approximately 12
billion neurons and 17 billion non-neuronal cells (1). Both
global and regional expansion of the primate cerebral cortex
are driven by biological events taking place during fetal
development; the phase of symmetrical division of progenitor
cells in the proliferative zones during the first trimester is
particularly important for tangential growth through addition of
ontogenetic columns (2). Although neurogenesis—and related
additions of ontogenetic columns—ends before birth, the
surface area of the cerebral cortex continues to increase dur-
ing the first 2 to 4 years of human life (3). But subsequent
changes in the surface area of the human cerebral cortex, as
estimated with magnetic resonance imaging (MRI), are
comparatively minimal (4–6). Quantitively, a majority of the
cortical expansion occurs prenatally and perinatally, with the
most prominent rate in cortical expansion occurring during
prenatal development (Figure S1) (7–10). Moreover, cortical
surface area in children, adolescents, and young adults is
correlated with birth weight, a common indicator for healthy
neurodevelopment (11,12). The genetics of cortical surface
area also implicates neurodevelopmental proliferative cells as
compared with adult cell types (13,14). Therefore, in the adult
brain, measures of cortical surface area provide a window into
events shaping prenatal and early postnatal growth of the
cerebral cortex that predate a broad array of mental illnesses
(13,15–17).
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To gain insights into the neurodevelopmental events that
may underlie differential growth of the cerebral cortex in in-
dividuals with mental illness and/or the presence of clinically
significant psychopathology (vs. healthy individuals) and the
influence of external risk factors, we first estimated the extent
of such group differences between cases1 and controls in the
surface areas of 11 cortical regions (due to corresponding
availability of fetal gene expression data). We then identified
cellular elements underlying interregional variations in
these group differences using virtual ontogeny, through
which interregional profiles of group differences in surface
area were correlated with interregional profiles of
gene expression. The latter were restricted to transcripts
expressed during 12 to 22 postconception weeks (PCWs)
and to the following cell types: radial glia, intermediate
progenitor cells (IPCs), excitatory neurons, interneurons,
oligodendrocyte progenitor cells, microglia, and endothelial
and mural cells. Finally, we asked which of these cell types
might mediate the impact on cortical growth of prenatal
factors reported to increase the risk of developing
psychosis—risk factors applicable to many mental illnesses
in general.
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METHODS AND MATERIALS

Meta-analytic Group Differences in Cortical Surface
Area

T1-weighted MRI scans were acquired in 89 cohorts partici-
pating in the ENIGMA (Enhancing Neuro Imaging Genetics
through Meta Analysis) Consortium. The ENIGMA Consortium
is a collaborative initiative in global neuroscience and focuses
on studying the human brain in health and disease through
genetics and imaging (18). Sample demographics and MRI
acquisition details per cohort are provided in Tables S1–S7.
FreeSurfer cortical reconstruction software was used to extract
surface area according to a parcellation scheme that intersects
with tissue sampling from the PsychENCODE Consortium,
described in Supplemental Methods and presented in
Figure S2. Individual ENIGMA cohorts performed multiple
linear regression analysis, modeling surface area of each
cortical region separately as a function of diagnosis status,
age, age squared, sex, and site-specific covariates (such as
MR scanner, multiple sites). Cohort-specific information
regarding diagnostic and sampling criteria are described in
previously published ENIGMA reports (19–23). Individual co-
horts obtained institutional ethics approval, and informed
consent was obtained from study participants or guardians.
Cohort-level summary statistics were then meta-analyzed us-
ing an inverse variance–weighted random effects model from
the “metafor” R package (24). Meta-analytic estimates are
provided in Tables S8–S12.

The ABCD (Adolescent Brain Cognitive Development) Study
is a longitudinal cohort study of brain development on roughly
w11,500 children sampled across the United States from the
general community (25). T1-weighted MRI data from the ABCD
Study were processed with FreeSurfer version 7.1 on the
Compute Canada Niagara server (26). MRI and sample
recruitment procedures for the ABCD Study have been
described previously (25,27). Psychopathology was indexed
by the total problem score from the parent-completed Child
Behavior Checklist (CBCL)—a simple index of global psycho-
pathology (28). The top and bottom 20% of the CBCL total
score distribution (stratified by sex and ethnicity) was used to
classify cases and controls, respectively (Figure S2B). Note
that this extremes-only approach minimizes possible noise in
CBCL data resulting from the known discrepancies between
parental reports (used here) and self-reports. Linear mixed-
effects models for each cortical region were run as a func-
tion of high/low psychopathology, age, age squared, sex,
ethnicity, and random effects (family structure and MRI ma-
chine). The “lme4” R package was used to run mixed-effects
models (29).

Virtual Ontogeny

To gain insights into the relationship between prenatal devel-
opment and postnatal group differences in cortical surface
area, we proceeded by following three steps (depicted in
Figure 1). First, we identified gene-expression markers specific
to a set of cells present in the human cerebral cortex toward
the end of the first and throughout the second trimester
(30–32). To do so, we used publicly available single-cell data
from the developing cerebral cortex of 5 donors, with
Biological Ps
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postconception age ranging from 5 to 22 PCWs (30)
(Figures S4 and S5). Second, we used these cell-specific
genes and calculated the median value of their expression
(200 genes per cell type) for each of the 11 cortical regions for
which group differences in surface area were examined (steps
2 and 3 from Figure 1). These expression values were derived
from the PsychENCODE bulk RNA sequencing dataset (14
donors, 12–22 PCWs) (33). The processing of single-cell and
bulk RNA sequencing data is described in the Supplement.
Third, the interregional profiles of the (median) expression of
these marker genes were correlated with the interregional
profiles of group differences in cortical surface area from
Figure 2A (step 4 from Figure 1). The average MRI-expression
correlation was tested for significance using a permutation-
based approach with 10,000 resamplings of random gene
lists, as described in detail in the Supplement (step 5 from
Figure 1). We also performed two additional sensitivity ana-
lyses 1) to estimate the distribution of the average correlation
coefficient between MRI and cell-specific gene expression by
bootstrapping the 200 gene expression profiles per cell type
and 2) to use gene set enrichment analysis as a test of over-
representation of cell-specific genes within the rank-ordered
list of MRI–gene expression correlations (34,35).

Gene Coexpression and Enrichment Analyses

The virtual ontogeny analysis focused exclusively on the
limited set of cell-specific genes. To expand the focus of genes
investigated while simultaneously interjecting findings from our
cell-specific approach, we used genome-wide coexpression
analysis including all prenatal donors from the PsychENCODE
dataset. Modeling of coexpression is presented in the
Supplement. Next, coexpressed gene panels for cell types that
showed significance from virtual ontogeny were used as inputs
for several enrichment analyses, including 1) gene ontology
enrichment, 2) disorder-related gene set enrichment, 3) cortical
surface area gene enrichment from prior ENIGMA genome-
wide association study data, and 4) enrichment with genes
associated with risk factors for psychosis. The details for each
analysis are presented in the Supplement.

RESULTS

Case-Control Differences in Surface Area and
Expression of Proliferative-Cell Genes

Meta-analytic profiles of group differences in cortical surface
area were quantified using structural T1-weighted brain MRI
scans. Cohorts from the ENIGMA Consortium contributed MRI
scans of individuals diagnosed with schizophrenia (SCZ),
ADHD, autism spectrum disorder (ASD), bipolar disorder, and
major depressive disorder. In addition, children from the ABCD
Study were classified into two groups with high or low psy-
chopathology, defined as the top and bottom 20%, respec-
tively, of the CBCL total problem score (Figure S2). This cohort
of children allowed us to extend findings obtained in patients
with an established clinical diagnosis to young people with
emerging psychopathology from the general community (25).
In total, 27,359 individuals contributed to group differences in
cortical surface area across 11 cortical regions (Figure 2A, B;
Tables S2–S6). These specific regions (and time period) were
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Figure 1. Methodological workflow for virtual
ontogeny. Step 1 (top left): identify top 200 cell-
specific genes from single-cell RNA sequencing
data of the developing neocortex (30). Step 2 (top
right): quantify median gene expression (bulk RNA)
across donors for each of 11 cortical regions
sampled from the PsychENCODE dataset (33). Cell
specificity was defined as the ratio of expression of a
gene in a given cell type divided by the expression
across all cells. For instance, the gene SLC1A3 was
in the top 200 specific genes for the radial-glia panel.
The expression of this gene is plotted in step 2 (top
right). Step 3 (bottom left): quantify meta-analytic
group differences in surface area between cases
and controls across the 11 cortical regions sampled
in the PsychENCODE dataset. Group differences for
SCZ are plotted as an example. Step 4 (bottom right,
top half): correlation between cell-specific gene
expression and an MRI-derived profile, in this case,
SLC1A3 expression and case-control differences for
SCZ. This is repeated for all 200 genes specific to a
cell type (in this case, radial glia) to create a distri-
bution of correlation coefficients in step 5 (bottom
right, bottom half). A1C, primary auditory cortex;
ABCD, Adolescent Brain Cognitive Development;
AMY, amygdala; CBC, cerebral cortex; DFC, dorsal
frontal cortex; ENIGMA, Enhancing Neuro Imaging
Genetics through Meta Analysis; HIP, hippocampus;
IPC, inferior parietal cortex; IPCs, intermediate pro-
genitor cells; ITC, inferior temporal cortex; M1C,
primary motor cortex; MD, mediodorsal nucleus of
thalamus; MDD, major depressive disorder; MFC,
medial frontal cortex; MRI, magnetic resonance im-
aging; OFC, orbitofrontal cortex; OPC, oligodendro-
cyte progenitor cell; PCW, postconception week;
S1C, primary somatosensory cortex; SCZ, schizo-
phrenia; STC, superior temporal cortex; STR, stria-
tum; V1C, primary visual cortex; VFC, ventral frontal
cortex.

2Undifferentiated (radial glia, intermediate progenitor cells); differ-
entiated (neurons, microglia, oligodendrocytes, and mural and
endothelial cells). Oligodendrocyte progenitor cells are a hybrid
state.
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selected based on the availability of gene expression data
during gestation (Figures S3 and S4) (33).

Case-control differences in surface area were greatest in
patients with SCZ and ADHD, and in the community sample of
children with high CBCL psychopathology scores (Figure 2A;
Tables S7–S12). Interregional profiles across the 11 cortical
regions were highly correlated between SCZ and ADHD
(Figure 2C). At the nominal level of significance (p , .05), we
also observed correlations between the CBCL profile and both
the ADHD and SCZ profiles (Figure 2C).

What neurodevelopmental processes might underlie these
group differences? To answer this, we related interregional
profiles of cell-specific gene expression in the developing ce-
rebral cortex (12–22 PCWs) with interregional profiles of group
differences in cortical area across the same 11 regions. These
case-control group differences were used as input to the an-
alytic framework depicted in Figure 1. This “virtual ontogeny”
analysis revealed positive associations between prenatal
expression profiles of proliferative cells, namely radial glia and
IPCs, and postnatal profiles of group differences in SCZ,
ADHD, CBCL, and ASD (Figure 3A, B; Table S13). Likewise,
these group contrasts showed negative associations with a
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number of differentiated cells, namely excitatory neurons and
endothelial and mural cells2. We tested the sensitivity of these
findings using two different statistical approaches: 1) boot-
strapped estimation of the correlation-coefficient distribution
and 2) gene-set enrichment analysis (Figures S6 and S7,
respectively). These somewhat more conservative analyses
confirm the general opposing pattern of enrichment with radial
glia/IPCs and excitatory neurons with ADHD, SCZ, and ASD.
This association was nominally significant for CBCL. In the
next steps, we focused on results specific to SCZ, ADHD, and
CBCL because these profiles presented robust group differ-
ences in surface area (Figure 2A).

Multimodal Associative Versus Primary/Unimodal
Cortex

Unsupervised hierarchical clustering of interregional profiles of
group differences in surface area revealed two distinct sets of
/journal
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Figure 2. Regional differences in cortical surface area across multiple
psychiatric conditions. (A) Meta-analytic estimates of group differences
in cortical surface between cases and controls. Contrast shown as
controls minus cases, where positive values indicate smaller surface
area in cases. (B) Schematic location of regions of interest from which
surface area was quantified. (C) Cross-disorder correlation matrix of
profiles from panel (A). *Nominal p , .05; ***false discovery rate–
corrected p , .05. A1C, primary auditory cortex; ADHD, attention-
deficit/hyperactivity disorder; ASD, autism spectrum disorder; BD, bi-
polar disorder; CBCL, Child Behavior Checklist; DFC, dorsal frontal
cortex; IPC, inferior parietal cortex; ITC, inferior temporal cortex;
M1C, primary motor cortex; MDD, major depressive disorder; MFC,
medial frontal cortex; OFC, orbitofrontal cortex; SA, surface area;
S1C, primary somatosensory cortex; SCZ, schizophrenia; STC,
superior temporal cortex; V1C, primary visual cortex; VFC, ventral frontal
cortex.
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cortical regions (Figure 4A). Cluster 1 consisted of multimodal
associative cortices3 while cluster 2 contained mostly primary
and unimodal cortices4. The group differences in cortical sur-
face area for SCZ, ADHD, and CBCL were greater in multi-
modal versus primary/unimodal cortices (Figure 4B; Figure S8).
Cell-specific gene expression trajectories during gestation also
revealed remarkable differences between these two clusters:
proliferative (i.e., undifferentiated) cells have greater cell-
specific expression in the multimodal cortices while differen-
tiated cells have greater expression in primary/unimodal
cortices (Figure 4C; Table S14).

Genetics of Psychiatric Conditions and Cortical
Growth: Intersection With Cell-Specific Gene
Coexpression Networks

As described above, we observed a certain degree of similarity
in interregional profiles of group differences in the cortical
surface area among the different mental health conditions
(particularly with SCZ, ADHD and CBCL) (Figure 2C). To cap-
ture these similarities, we carried out principal component (PC)
analysis of the interregional profiles. This analysis revealed
clear demarcation between the multimodal and primary/
unimodal clusters, respectively (Figure 5A), with PC1 explain-
ing 50% of the variance and PC1 correlating highly with SCZ,
ADHD, and CBCL (Figure 5B). As expected from the condition-
specific analyses (Figure 3), virtual ontogeny of the PC1
loadings showed positive associations with radial glia and
IPCs and showed negative associations with excitatory neu-
rons and endothelial and mural cells (Figure 5C; Figure S9).
Sensitivity analyses confirmed significant associations with
radial glia, IPCs, and excitatory neurons, with a weaker finding
for the mural cells (Figure S10). To investigate further the
processes underlying the association between PC1 and cell-
specific genes, we generated coexpression panels of genes
for each cell type associated with PC1, expanding the scope of
our work from cell-specific genes to all related genes. Gene
Ontology enrichment analysis revealed a number of specific
biological processes associated with each cell type–specific
coexpressed panel. Thus, radial glia and IPC genes were
highly enriched for biological processes relating to cell division,
while vasculature-forming endothelial and mural cells as well
as excitatory neurons were enriched, respectively, for blood
vessel morphogenesis and synaptic signaling/organization
(Figure 5D–F). Genes associated with schizophrenia, as
derived from genetic variant studies (36), were enriched in
coexpression networks of the radial glia and excitatory neu-
rons (Figure 5G). Genes associated with the cortical expansion
of multimodal cortices, as derived from genome-wide associ-
ation studies (14), were enriched in coexpression networks of
the radial glia and IPCs (Figure 5H; Table S14). Note that the
latter enrichment was not found in the case of unimodal
cortices, pointing again at the distinction of the two types of
3Multimodal associative cortices in cluster 1 (intermediate pro-
genitor cell, orbital frontal cortex, medial frontal cortex, dorsal
frontal cortex).

4Primary/unimodal cortices in cluster 2 (primary visual cortex,
ventral frontal cortex, primary motor cortex, primary somato-
sensory cortex, primary auditory cortex, superior temporal
cortex).
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Figure 3. Virtual ontogeny. (A) Distribution of
correlation coefficients between prenatal cell-
specific gene expression and postnatal group
differences in cortical surface area. Gray box around
zero represents 99% confidence intervals from the
null distribution generated through 10,000 resam-
plings of gene expression and group-difference
profiles. Black vertical line represents the mean
correlation coefficient (biweight midcorrelation) of
the distribution, also plotted in panel (B). *False
discovery rate–corrected p value , .01. ADHD,
attention-deficit/hyperactivity disorder; ASD, autism
spectrum disorder; BD, bipolar disorder; bicor,
biweight midcorrelation; CBCL, Child Behavior
Checklist; IPC, intermediate progenitor cell; MDD,
major depressive disorder; OPC, oligodendrocyte
progenitor cell; SCZ, schizophrenia.
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cerebral cortices with respect to their neurodevelopmental
characteristics and/or developmental timing.
Cell Types and Prenatal Risk for Psychosis

Experimental studies have pointed to a number of external
factors that may interfere with typical development of the ce-
rebral cortex in nonhuman primates (37,38). Similarly, epide-
miological studies have identified a number of pre/perinatal
risk factors associated with later emergence of psychosis
(such as low birth weight and preterm birth) (39). These risk
factors can be generalizable to most neurodevelopmental
disorders.

Here, we tested which of the cell types associated with the
PC1 profile of group differences in surface area might mediate
the impact of risk factors for psychosis on prenatal growth of
304 Biological Psychiatry August 15, 2022; 92:299–313 www.sobp.org
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the human cerebral cortex. Prenatal risk factors for psychosis
were identified from a systematic review and meta-analysis
that included 152 studies (Figure 6A) (39). We selected, a pri-
ori, sets of genes linked to each of these risk factors using
either relevant Gene Ontology terms (40) or genes associated
with a particular condition (e.g., congenital abnormalities), as
identified in curated datasets based on genome-wide associ-
ation study catalogs, animal models, and the greater scientific
literature (Table S15) (36,41). The results showed that genes
implicated in congenital abnormalities were enriched with the
radial glia, IPCs, and mural cell–specific coexpressed panels
(Figure 6B; Table S17). Genes pertaining to birth weight, hyp-
oxia, and famine were also enriched in the radial glia panel. In
contrast, genes pertaining to the regulation of blood pressure
(and, therefore, relevant to maternal hypertension during
pregnancy), as well as genes associated with preterm birth,
/journal
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B Figure 4. Differences in cortical surface area
cluster into associative and primary/unimodal cor-
tex. (A) Hierarchical clustering dendrogram of group
differences in cortical surface area with k = 2 clus-
ters. (B) Boxplot depicting group differences be-
tween clusters for each of the six profiles
investigated. (C) LOESS model fits of cell-specific
gene expression trajectories stratified by cortical
cluster. Expression (y-axis) is unit scaled. Shaded
gray region around the model fit represents 95%
confidence intervals. Vertical black dashed lines
represent prominent windows of neurodevelopment
reported previously (33). A1C, primary auditory cor-
tex; ADHD, attention-deficit/hyperactivity disorder;
ASD, autism spectrum disorder; BD, bipolar disor-
der; CBCL, Child Behavior Checklist; DFC, dorsal
frontal cortex; IPC, intermediate progenitor cell; IPC,
inferior parietal cortex; ITC, inferior temporal cortex;
M1C, primary motor cortex; MDD, major depressive
disorder; MFC, medial frontal cortex; OFC, orbito-
frontal cortex; OPC, oligodendrocyte progenitor cell;
PCW, postconception week; S1C, primary somato-
sensory cortex; SCZ, schizophrenia; STC, superior
temporal cortex; V1C, primary visual cortex; VFC,
ventral frontal cortex.
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were enriched in the mural panel. Although preeclampsia was
not a significant risk factor for psychosis [odds ratio = 1.32, p =
.059 from (39)], genes associated with this condition inter-
sected with those included in the endothelial and mural panels
(Figure S11).
DISCUSSION

It appears that the differential growth of the cerebral cortex
preceding mental illness and general psychopathology in
childhood 1) is more pronounced in multimodal (vs. primary/
unimodal) cortical regions, 2) is related to the spatial pattern of
prenatal expression of genes underlying neuro- and angio-
genesis, and 3) might be reflective of influences of known risk
factors acting on these cellular processes during prenatal
development.
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Cortical regions that show the largest case-control group
differences in surface area are regions with greater prenatal
expression of proliferative cells (radial glia, IPCs) and lower
expression of differentiated cells such as excitatory neurons
and endothelial and mural cells during the first trimester. This
implies potential disruption in processes of progenitor expan-
sion and subsequent differentiation, with possible cascading
effects in later (postnatal) developmental periods. Radial glia
serve as a key progenitor population driving neurogenesis and
creating a vertical scaffold for neuronal migration from prolif-
erative zones to the cortical plate (2). According to the radial
unit hypothesis, the cortical surface area of a given region
depends on the number of contributing proliferative units (2);
experimental enhancement of the neural progenitor population
results in greater surface expansion and folding (42). Subtle
deviations in progenitor cell division may have a profound
ychiatry August 15, 2022; 92:299–313 www.sobp.org/journal 305
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B Figure 5. Enrichment of cell-specific gene panels.
(A) Principal component analysis plot of regional
loadings of PC1 and PC2. (B) Correlation between
disorder-specific profiles and PC1/PC2 loadings. (C)
Virtual ontogeny analysis depicting distributions of
correlation between interregional variation in cell-
specific gene expression and PC1 loadings (across
the 11 regions). *FDR p , .01. (D–F) Gene Ontology
enrichment analysis of coexpressed cell-specific
gene panels. Gene ratio represents the proportion
of genes in the cell-specific panel that intersect with
a Gene Ontology term with the total size of the gene
set. (G) Enrichment analysis for disorder-associated
genes for the three disorders loading strongest on
PC1 (SCZ, ADHD, and ASD) and for (H) cortical
surface area–associated genes of clusters 1 and 2.
A1C, primary auditory cortex; ADHD, attention-
deficit/hyperactivity disorder; ASD, autism spec-
trum disorder; BD, bipolar disorder; CBCL, Child
Behavior Checklist; DFC, dorsal frontal cortex; FDR,
false discovery rate; IPC, intermediate progenitor
cell; IPC, inferior parietal cortex; ITC, inferior tem-
poral cortex; M1C, primary motor cortex; MDD,
major depressive disorder; MFC, medial frontal
cortex; OFC, orbitofrontal cortex; OPC, oligoden-
drocyte progenitor cell; PC, principal component;
S1C, primary somatosensory cortex; SCZ, schizo-
phrenia; STC, superior temporal cortex; V1C, pri-
mary visual cortex; VFC, ventral frontal cortex.
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impact on the resulting neuronal population owing to the self-
renewing (amplifying) nature of radial glia and IPCs: two radial
glia cells may generate more than 80 neurons following eight
rounds of cellular division (43). For instance, loss of the DISC1
gene, a genetic locus of relevance for schizophrenia among
other mental illnesses, reduces neural-progenitor proliferation,
leading to premature differentiation (44). This parallels the
observed intersection between genes associated with SCZ
and genes in the radial glia coexpression network associated
with group differences in cortical surface area between pa-
tients with SCZ and healthy control subjects (Figures 2A and
4H). We also observed associations with endothelial and mural
cells, components of the developing cortical blood vessels.
The development, growth, and maturation of cerebral vascu-
lature and neural structures occurs simultaneously with bidi-
rectional signaling and influences [reviewed in (45)]. Neural-
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derived signals control angiogenesis and blood vessel
patterning, while vascularization modulates the extent of
neurogenesis and progenitor differentiation. Given that
neurogenic niches require hypoxic conditions for progenitor
cell expansion, a spatiotemporal balance between expansion
and differentiation is controlled, in part, by blood vessel for-
mation and subsequent oxygenation (45,46).

Multimodal (association) cortices appear to stand out, with
regard to both the observed group differences in their surface
area and the spatiotemporal pattern of prenatal expression of
genes specific to undifferentiated (proliferative) and differenti-
ated (neurons, vasculature) cells. Generally speaking, these
cortical regions subserve complex perceptual and cognitive
processes, building on information received from unimodal
cortices. Previous studies have pointed to a prolonged
developmental time course as one of the characteristics
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Figure 6. Risk factors of psychosis with impli-
cated cell types. (A) Z scores for pre/perinatal risk
factors for psychosis from Davies et al. (39) are
represented by the size of the circle, and the corre-
sponding odds ratio is in the text below. (B) Enrich-
ment between genes implicated in risk factors for
psychosis and coexpressed cell-specific gene
panels identified to be related to group differences in
cortical surface area. Horizontal dashed line repre-
sents FDR , .05. FDR, false discovery rate; IPC,
intermediate progenitor cell; OR, odds ratio.
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distinguishing multimodal and primary cortices. Evidence
supporting this view includes a prolonged existence of the
transient associative subplate as compared with primary
cortices (47), less dendritic shaft/spine growth at birth (48), and
a delayed maturation of projection fibers in associative white
matter (49). The prolonged existence of the associative sub-
plate may be of particular importance for disorders charac-
terized by alterations in complex perceptual and cognitive
processes because these neurons play key roles in axonal
pathfinding, cell survival, and guiding cortical circuitry matu-
ration and, as such, in the development of corticocortical
associative fibers [see review in (50)]. Postnatally, functional
MRI and structural (tract tracing) studies in humans and ma-
caques, respectively, have shown a principal gradient in
cortical connectivity of multimodal regions distinct from the
primary cortex (51). These regions are also situated in key
nodes of the default mode network, in which aberrant activity is
implicated in many, if not all, psychiatric conditions (51,52).
Taken together, delayed maturation of association cortices
correlates with greater vulnerability to genetic or environmental
perturbations.

The neurodevelopmental theory of schizophrenia, as per
Murray (53) and Weinberger (54,55), has sparked intense in-
terest in early events that may increase the risk of developing
this mental illness later in life. As summarized recently, a
number of prenatal and perinatal factors appear to increase
the risk to developing psychosis (39). Here, we provide initial
evidence that links, albeit indirectly, such risk factors to SCZ
via cellular processes underpinning cortical growth during
prenatal development (Figure 5). We have identified two
possible—mutually nonexclusive—pathways. The first one—
at play in cases of low birth weight, hypoxia, and famine—
involves radial glia (i.e., proliferation). The other one—at
play in cases of maternal hypertension, preeclampsia, and
preterm birth—involves endothelial and mural cells (i.e.,
vasculature). Nutrient restriction in animal models (nonhuman
primates and other vertebrates) produces impaired function
of progenitor cells, cell-cycle arrest, and increased cell death
(38,56). Likewise, rat models of hypoxia-ischemia–related
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injury in the developing cortex show marked reduction in
the population of neural stem cells (57). In contrast, experi-
mental models of preeclampsia (a hypertensive syndrome)
have shown abnormal cerebrovascular morphology and
permeability/growth [reviewed in (58)]. The latter parallels our
intersection between maternal hypertension (and preeclamp-
sia) and endothelial and mural cells. Finally, the broad clas-
sification of congenital malformations was strongly
associated with radial glia/IPC genes as well as endothelial
and mural cells, hinting at the close (likely bidirectional)
relationship between corticogenesis and developing blood
vessels [reviewed in (45)].
Limitations and Considerations

It is important to qualify the findings from this report, given the
nature of the comparisons between different datasets and
periods in time. Group differences in cortical surface area likely
indicate a general vulnerability to developing psychopathol-
ogy, but it is not a feature that distinguishes what kind of
disorder an individual may manifest later in postnatal life.

These findings allow us and others to formulate follow-up
hypotheses to be tested experimentally, possibly with the
advancement in cortical organoid modeling (59). The findings
were limited by the availability of prenatal gene-expression
data given the limited sampling of cortical regions (only 11
regions) and the limited number of donors from various periods
of gestation (missing data from very early and later stages of
prenatal development). Statistically, it would be most
straightforward to relate the spatial profile of group differences
in surface area with the average gene-expression profile spe-
cific to cell types; with only 11 regions, however, there is little
statistical power. To address this limitation, we have used
resampling-based approaches along with sensitivity analyses
to test for cell-specific associations. Likewise, the gene-
expression dataset was sampled from the cortical plate, while
cellular division, differentiation, and maturation take place
within the ventricular, subventricular, and intermediate zones
of the developing cerebral cortex. This necessitates the
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assumption of similar interregional expression profiles re-
flected across developing lamina, as postulated in the proto-
map hypothesis (2).

We investigated exclusively the prenatal period in relation to
group differences in cortical surface area for several reasons:
1) the dominance of prenatal period vis-a-vis the tangential
growth of the cerebral cortex (surface area) as shown from
experimental (37,60) and genetic (13,14) studies, 2) epidemi-
ologic evidence implicating birth weight (an index of healthy
brain growth) and risk for psychiatric disorder diagnosis (16),
and 3) enrichment of neurodevelopmental cell types/processes
in genetic variants associated with multiple psychiatric disor-
ders (13,15,17). Even so, this is not to say that developmental
disturbances during postnatal life, especially during infancy,
may not contribute to the surface area sampled later in life.
There are three key periods of cortical expansion: 1) greatest
expansion during gestation, 2) expansion from birth to the first
2 years of life, and 3) subtle increases until the end of child-
hood (depicted in Figure S1) (7–10). It is very likely, however,
that different processes underly cortical expansion in these
different stages of brain development. Prenatally (before birth),
expansion is determined through addition of ontogenetic col-
umns (2,43). Between birth and the first 2 years of life, cortical
growth may be a consequence of the expansion in neuropil
and cortical minicolumns (61–63). Following 2 years of age,
cortical expansion may be related to the growth of underlying
white matter (64). The processes governing cortical expansion
after birth have not been systematically evaluated. Nonethe-
less, we observe signals relevant to neurodevelopmental cells
(radial glia/IPCs) in cohorts with vastly different age ranges
such as those in the ENIGMA ASD, ENIGMA ADHD, and ABCD
CBCL groups, which were predominately younger, as
compared with the (older) ENIGMA SCZ group. This supports
our assumption about the importance of the pre/perinatal
environment and cortical surface area. Taken together, it is
likely that perturbations of early development may have a
sizable impact on cortical surface area measured later in life,
primarily through neurogenesis and subsequent expansion of
neuropil.

Conclusions

In summary, we show that a simple in vivo measure of brain
structure, namely surface area of a set of cortical regions,
acquired many years after birth provides an anchor for identi-
fying developmental processes at play before birth and for
suggesting cellular mechanisms that may mediate the known
associations between common pre- and perinatal risk factors
and severe mental illness.
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